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The concept of gating has been applied to the theoretical description of rate processes coupled to conformational
rearrangements of biological macromolecules both out of equilibrium and near equilibrium. The out-of-
equilibrium rearrangements are discussed in terms of requirements imposed by the complexity of biomolecules.
These include (i) a variety of relaxation time scales for different degrees of freedom, (ii) constraints arising
from their interactions, and (iii) the hierarchy of conformational substates. The simplest possible model that
satisfies the requirements i-iii is developed. The model suggests that the motion along the reaction coordinate
is gated by slower degrees of freedom. We show that under this assumption dynamics of the reaction coordinate
resembles anomalous (non-Gaussian) diffusion. Expressions for observables derived within our model predict
(i) a suppression of reaction coordinate dynamics in biomolecules imbedded in rigid matrixes, (ii) a transition
from the familiar Debye exponential relaxation to the Kohlrausch-Williams-Watts relaxation described by
a stretched exponential, and (iii) distinct temperature dependencies of relaxation rates for these relaxation
processes. The experimental data on ligand binding to myoglobin support predictions i and ii. Coupling of
rate processes to local conformational rearrangements near equilibrium has also been studied. As a particular
example of such processes, we consider hole injection and transport in DNA molecular wires. Our treatment
suggests that fluctuations in the mutual arrangement of base pairs in the stack can serves as a gate for both
processes. This explains the unusual temperature dependence of the voltage gap found experimentally for
poly(guanine)-poly(cytosine) molecular wires. The diffusion coefficient of holes and their mobility as a
function of temperature are estimated for base pair stacks of varying structure.

1. Introduction

A common feature of biologically important molecules is a
large number of conformational substates.1 Due to transitions
between the substates, the structure of the biological molecule
imbedded in a solvent fluctuates and these fluctuations can
drastically change the accessibility of reaction sites inside the
molecule. Consequently, diffusion-controlled reactions of bio-
logical macromolecules, such as ligand binding to heme proteins,
proceed with rates strongly affected by conformational fluctua-
tions, and therefore, such reactions are characterized as rate
processes coupled to the dynamics of reactant conformational
rearrangements.

A convenient approach to model conformational dynamics
is based on the concept of gating.2 According to this idea,
fluctuations serve as a gate that opens and closes the reaction
binding site. The penetration of small ligands (O2 and CO) into
a heme “pocket” of myoglobin, when the motion of the protein
chains permits the ligand to enter, furnishes a representative
example of the gating mode, with the gate located on the protein.
This particular example illustrates only one possible application
of gating, which has also been used in several other biological
contexts. These include the migration of small molecules through

a protein matrix,3 processes in biomembranes,4 and biophysical
aspects of medical therapies associated with reversible blocking
of chemical reactions.5

Earlier theoretical works2 treated gated reactions as diffusion-
controlled processes affected by a certain stochastic (usually
Markovian) impact. In the simplest two-state variant of theory,2d,2h

the dynamics of the gate was assumed to be a stationary Markov
process symbolized by the rate equation

Theoretical analysis of this model situation allows the derivation
of analytical expressions for the effective rate constant and the
survival probability of reactants involved in gated reaction.
Many-particle effects,2h the influence of reactant interactions
on geminate and bulk diffusion-controlled processes,2i and the
non-Boltzmann rate distributions in stochastically gated reactions2j

were also studied. In all these cases, however, the concept of
gating deals with a moving reactive particle as a whole and/or
with large-scale changes in the geometry of reactants like, for
instance, the opening of the “heme pocket”. Another important
aspect of the problem closely related to such fields of physical
chemistry as “rate processes with dynamic disorder”6 and
“dispersive rate processes”7 is gated coupling between various
degrees of freedom of complex biomolecular objects.8 The gated
coupling implies that local rather than large-scale molecular
rearrangements along a certain degree of freedom can be
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considered as a gate for the local rearrangements along other
degree of freedom. So far, this situation, which is known to be
common for many biological macromolecules,9 was studied
insufficiently. This is especially true for the systems, where
different degrees of freedom undergo relaxation over time scales
organized hierarchically.

The present work is an attempt to fill the above gap in the
description of rate processes in biological macromolecules. In
particular, we explicitly treat the influence of hierarchic tiers
on the dynamics of reaction coordinate. As a consequence, the
detailed analysis of rate processes affected by conformational
dynamics of biomolecules becomes possible. Two main types
of conformational changes, i.e., local rearrangements at equi-
librium and out of equilibrium, are discussed in detail. Both
are able to affect a rate process proceeding in a biomolecular
environment. As an example of nonequilibrium local rearrange-
ments, in section 2, we consider conformational relaxation of
certain degrees of freedom governing the rate of chemical
reactions in proteins. A main interest is the situation commonly
encountered in experimental studies of geminate ligand-heme
recombination9 and electron transfer in proteins,10 where con-
formational changes are triggered by reactants inside the
molecule due to excitation, for instance, by a short laser pulse.
As a result, the reactant surroundings undergo relaxation from
an initial nonequilibrium configuration toward the final equi-
librium conformational state. For complex objects such as
biomolecules, the relaxation process proceeds along many
degrees of freedom and on many time scales. Since at least
several of the coordinates specifying the relaxing degrees of
freedom also define the height of the reaction barrier, the rate
process is coupled to changes in the configuration of the
complex molecular system, in which the chemical transformation
occurs. The reaction dynamics can then be described in terms
of nonequilibrium barrier crossing, frequently discussed in the
literature11 using a model similar to that proposed by Agmon
and Hopfield.12 This model as well as the Marcus-Sumi-
Nadler investigation of dynamic solvent effects in electron-
transfer processes13 suggests that in addition to a reactant
separationr arising due to bond breaking, there exists a gating
coordinate x along which the reaction barrier should be
overcome. To describe motion in thex-direction, we apply the
concept of gating to the coupling between the reaction coordinate
and other (usually slower) degrees of freedom. This suggests
that relaxation of slower degrees of freedom responsible for
large-scale conformational rearrangements opens the gate for
the diffusive motion along thex-axis. As a consequence, the
reaction coordinate can relax only if slower configuration
changes “turn on” a green light for the migration along the
coordinatex governing the rate of the barrier crossing and
therefore the rate of reaction (the “traffic light” process). Using
the simplest model possible, we demonstrate that the net effect
of large-scale conformational rearrangements on the dynamics
of reaction coordinate in proteins is anomalous (non-Gaussian)
time-dependent diffusivity.14 The latter arises only below a
certain temperature prescribed by the energy distribution of
protein conformational substates. Within the model proposed,
the probability of reactants surviving in the course of the “traffic
light” process and the time evolution of the reaction barrier are
investigated. Our theoretical findings agree well with experi-
mental observations for the standard test, geminate recombina-
tion of CO and heme iron in myoglobin.

A significant example of local conformation rearrangements
studied in section 3 pertains to equilibrium fluctuations of
torsional degrees of freedom, which control the efficiency of

charge injection15 and transport16 over long distance in biological
macromolecules. Being partially motivated by recent experi-
ments on electrical conduction through individual DNA mol-
ecules,17,18 we develop a theoretical model for hole injection
and their transport controlled by fluctuation dynamics within
the poly(guanine)-poly(cytosine) duplex. The model suggests
that changes in the relative orientation or positions of two
adjacent guanine bases slow the injection rate as the applied
voltage approaches a threshold value. Like rate processes
coupled to protein relaxation, the injection of charge carrier in
DNA controlled by fluctuations in the mutual arrangement of
nucleobases can also be treated as a “traffic light” process. In
this case, however, “green” or “red” traffic lights for charge
injection are turned on by fluctuations in the arrangement of
guanine-cytosine (GC) base pairs inside the stack, since these
affect the position of the HOMO level.15,19We demonstrate that
for the poly(guanine)-poly(cytosine) duplex, our model yields
nonlinearI-U curves with a low-temperature voltage gap near
2.4 eV, in agreement with experimental observations.18 Fur-
thermore, these calculations suggest that for electric conductivity
controlled by internal reorientation dynamics of stacked GC
pairs the voltage gap becomes larger as temperature increases.
This trend was indeed observed in experiments of Porath et al.,18

but has remained unexplained. The conduction of DNA
molecules as a function of temperature was also investigated
above a voltage threshold where the band-like motion of charge
carriers affected by torsions of base pairs can be described within
the tight-binding approximation.20 Numerical results show that
the mobility of injected charges decreases with temperature and
does not obey the familiar Arrhenius dependence. For systems
where bridge-mediated charge transfer between donor and
acceptor is controlled by changes in the relative orientation of
mediators and where the equilibrium state is optimally over-
lapped, our theoretical treatment predicts a decrease of the
tunneling transfer rate with temperature. This supports an earlier
idea21 concerning the effect of twisting motion on the conducting
properties of polymers and on the variation of these properties
with temperature.

2. Rate Processes Coupled to Conformational Relaxation

Let a biological macromolecule (e.g., a heme protein) with
n degrees of freedom be subjected to slow conformational
rearrangements triggered by the formation of reactive structures
(for instance, an unbound ligand) and/or reaction sites (for
example, an iron in the heme plane) inside the molecule at the
time instantt ) 0. Next, let us assume that fort > 0 a chemical
reaction is coupled to the local rearrangements of the reaction
site. The common approach used to take this coupling into
account suggests that the specific reaction ratek(x) depends on
the conformational reaction coordinatex, while the population
of conformational substates characterized by this coordinate
evolves with time due to the diffusive motion in thex-
direction.11,12 This leads to the relaxation of the reaction
coordinate considered as a local internal mode of the biomo-
lecular object. Experiments23-25 and general theoretical analysis
of relaxation in strongly interacting systems26 indicate, however,
that this local mode should be coupled to the degrees of freedom
distinct fromx. Certain of them define more extended configu-
rations of the object with much slower rate for attaining the
equilibrium. The question now arises: To what extent are such
global modes able to affect the dynamics of the conformational
reaction coordinate and, hence, the rate of the reaction barrier
crossing? The answer is of primary interest for clarifying such
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issues as the protein role in the ligand-heme recombination9

and in electron-transfer processes proceeding in the photosyn-
thetic reaction center and other systems.10a,b,i,j

So far, the effect of global modes on the dynamics of the
conformational reaction coordinate has been taken into account
only implicitly by postulating that they may predetermine either
parameters or the shape of thex-dependent part of the effective
potential used to describe the ligation process.11,12By contrast,
a class of models proposed here enables us to treat this effect
explicitly. Models that fall into this class are based on the
hierarchical structure of substates corresponding to local and
global conformation rearrangements. Besides, they include
constraints affecting the motion in the x-direction. In this regard,
our theoretical description employs the same physical principles
as those used for the formulation of the “spin-glass” models of
relaxation.26

As an example, in the next section, we present the simplest
hierarchic scheme with the constraint which allows the analytical
treatment of the problem. This scheme is used in section 2.2 to
the describe motion along the conformational reaction coordinate
in the case where it can be affected by the relaxation of more
global configurations of the biomolecular environment. The
results obtained are used in section 2.3 to derive expressions
for observables including the mean rate coefficient, the reaction
barrier, and the survival probability. The calculated values of
these quantities are compared with the experimental data
reported for the geminate recombination of CO and heme iron
in myoglobin.

2.1. Hierarchy and Constraint. Following the “spin-glass”
models26 and characteristic similarities of proteins and glasses,27

we suppose that a successful theory of relaxation in biological
macromolecules should satisfy three main requirements. First,
the time behavior of the relaxing object should be described in
terms of dynamics rather than in terms of statistics. This is
particularly essential for biological macromolecules, which show
certain common features with glasses. The latter systems are
known to break ergodicity, so equilibrium distributions in
configuration space are of little use. Second, the impossibility
to diagonalize any reasonable nonlinear system into independent
modes implies that the theory should involve constraints. They
arise due to the interactions between various degrees of freedom
and lead to the situation where, for example, atom X can move
during or after relaxation of a spatially extended molecular unit
Y. Third, a theoretical approach to the relaxation in complex
systems should be based on a hierarchical scheme that takes
proper account of dramatic distinctions between various degrees
of freedom in the rates of attaining the equilibrium.26,28,29

A hierarchical scheme satisfying the requirements mentioned
above can easily be constructed by realizing that the confor-
mational reaction coordinatex serves as the demarcation line
between quickly and slowly relaxing degrees of freedom.29 Then
the first tier of the hierarchy may be associated withj degrees
of freedom equilibrated earlier than others. The most obvious
example is the spatial separationr between a small ligand and
the heme site of unligated protein.12

The second tier includes the local degree of freedom that
controls the specific rate of the chemical processk(x). For
instance, in a particular case of ligand binding to heme proteins,
x can be assigned to the distance between heme iron and the
mean heme plane.9,11,12

The remaining motions are pooled to form the third tier of
the hierarchy and are characterized by a set of coordinatesyi

(i e n - j - 1). This tier involves degrees of freedom that

determine conformation rearrangements of spatially extended
structural units (for instance, due to the interaction of the
unligated protein with the solvent) and governs the relaxation
of the whole object or its essential parts toward the final
equilibrium configuration. The latter process is modeled by
sequential transitions of the system between conformational
substates defined by random minima on the energy profiles
presumably known for eachyi. Such global modes are assumed
to constrain the rearrangements along the conformational
coordinate usually approximated by diffusion in the harmonic
potential.11,12 The migration in thex-direction is allowed only
in the course of conformational transitions along at least one
of a number of coordinatesyi related to the third tier of the
hierarchy; otherwise, changes in the position of the object on
the x-axis are forbidden. Thus, the third tier is assumed to act
as a gate for the motion alongx-axis, so the time evolution of
the conformational reaction coordinate becomes a “traffic light”
process.

2.2. Motion along Conformational Reaction Coordinate.
Taking into account the hierarchy of substates discussed in
section 2.1, we turn now to a theoretical description of the
constrained migration of the object in thex-direction. The
following assumptions have been invoked to simplify the
solution of the problem:
(i) The migration along the conformational reaction coordinate
can be characterized by the diffusion coefficientDx during each
conformational transition in the third hierarchical tier, which
removes the prohibition for the x-motion.
(ii) Dx increases with temperatureT following the familiar
Arrhenius law with the activation energyEx and with the
preexponential factorD0.
(iii) On the third hierarchical tier, each event of conformational
rearrangement involves three steps, namely, a thermal release
from the local minima on the energy landscape, a fast motion
toward the position of the next minimum, and a subsequent
trapping there; these steps have typical time durationsτ(E),
τ*, and τL, respectively, which satisfy the conditionτ(E) .
τ* . τL.
(iv) There are no correlations between positions of the object
in the course of relaxation along variousyi.
(v) The number of relaxation pathwaysq ) n - j - 1 on the
third tier of the hierarchy is much greater than unity.

Of course, a fuller model might include a more branched
hierarchy of time scales, correlations between differentyi, and
the tunneling mechanism of transitions between conformational
substates at each tier. However, we prefer the simplest model
possible, since it suffices to gain understanding of the central
physical phenomenon involved. Besides, current experimental
detail does not justify the introduction of additional parameters
and assumptions necessarily arising in extended variants of the
theory.

The simple model formulated above offers the physical
picture for the constrained dynamics of biological macromol-
ecules schematically shown in Figure 1. According to this
picture, each conformational transition along theith relaxation
pathway on the third tier allows a displacement in thex-direction
with the probability

whereτ(E) ) w0
-1 exp[E/(kBT)], w0 is the frequency factor,

andkB is the Boltzmann constant. The approximate equality in

Fi )
τ* + τL

τ(E) + τ* + τL

≈ τ*

τ(E)
(1)
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the above expression forFi corresponds to the assumption iii
that enables one to neglectτL andτL + τ* in the numerator and
in the denominator of eq 1. Since the relaxation along the
conformational coordinatesyi is statistically independent (see
assumption iv), the mean probabilityFh(t) of the x-motion can
be obtained by summingFi over all i (i ) 0, 1, ..., q) and
averaging of the resultant ratioqτ*/τ(E) over the energy
distribution,P(E,t), of substates (“traps”) occupied on the third
hierarchical tier at timet. As a result, one gets

This implies that the population of conformational susbstates
belonging to the second tier will propagate in thex-direction
with the effective diffusion coefficient

where∆0 ) (qτ*D0)1/2.
The physical meaning of the obtained result is apparent. The

product of first two factors in eq 3 represents the squared

displacement in thex-direction during the period of time, when
a “green” light for motion along the reaction conformational
coordinate is “switched on” by the slow relaxation at the third
hierarchical tier. SinceC(t) represents the mean frequency for
the “green” light flashes, the effective diffusion coefficientDeff(t)
is defined by the product ofC(t) and the squared displacement
in the x-direction in accordance with eq 3.

To specify the integralC(t) in eqs 2 and 3, it is instructive to
note that the time evolution of distribution functionP(E,t) is
described by the equation

Here W(E′,E) is the probability density that the object will
undergo a transition from the substate with the energy between
E′ andE′ + dE′ to the substate of the energyE. Since there are
no preferential trapping sites for the temporal localization of
the object due to theE′ f E transition,W(E′,E) coincides with
the distributiong(E) pertaining to the third tier of the hierarchy.
Hence, the solution of eq 4 can be written as

Multiplying both sides of eq 5 byτ(E)-1 and performing the
subsequent integration over all possible values of E, we arrive
at the equation

This enables us to obtainC(t) in the form of the Laplace
transform. Indeed, putting

one can verify that

On the basis of physical arguments,g(E) is usually assumed
to decrease withE as the energy depth of conformational
substates becomes equal to or higher than a certain valueE* g
0 (see, e. g., refs 11 and 12). In this case, the analysis allows us
to specify the asymptotic temporal behavior of the effective
diffusion coefficient in different temperature and time intervals.
The results obtained are specified in Table 1. Note that in the
high-temperature limit (i.e., atT > Tcr), Deff(t) turns out to be
time independent, while in the low-temperature limitT < Tcr,
there exists a rather wide time range, where this quantity evolves
with t. Formally, the temporal behavior ofDeff is similar to the
time evolution of the diffusion coefficient for anomalous (non-
Gaussian) transport in one-dimensional systems with static
energy disorder,14 although physics of hierarchically constrained
diffusion is distinct from physics of anomalous transport. The
formal similarity can be expected, since the relaxation at the
third hierarchical tier proceeds along large number of pathways
with substates distinct in their energies and, therefore, the mean
frequency of the “green” light flashes for the motion in the
x-direction should decrease as the system visits deeper and
deeper conformational substates. The similarity between anoma-

Figure 1. Simple hierarchy of conformational substates with gating
constraint. Three hierarchical tiers involve degrees of freedom, specified
by variablesrj, x, andyi distinct in the rates of attaining their equilibrium
valuesrj

eq, xeq, andyj
eq. As seen from the lower panel, att ) 0, the

relaxation at the first tier has already been completed, and the object
is at a certain point of multidimensional conformational space with a
set of coordinates{rj

eq,x0,yi0}. The random variablesyi0 define the
initially occupied local minima of energy profiles for eachyi and thus
determine starting points for relaxation “trajectories” at the third tier.
At t > 0, the object undergoes sequential transitions between the
neighboring minima along any one of these trajectories. One of these
global modes is presented in the upper panel, where solid horizontal
lines correspond to the timeτ(E) spent by a biological molecule in the
minimum with the energy depthE. By virtue of the gating constraint,
a green light for the motion in thex-direction flashes only during each
of hopping events at the third tier. As a result, the global modesyi

govern the diffusive dynamics of local conformational changes at the
second hierarchical tier, and the average of the conformational
coordinate relaxes from the initial mean valuex ) x0 toward its
equilibrium valuex ) xeq (see middle panel).

Fh(t) ) qτ*∫0

∞P(E,t)

τ(E)
dE ) qτ*C(t) (2)

Deff(t) ) DxFh(t) ) ∆0
2 exp(-

Ex

kBT)C(t) (3)

dP(E,t)
dt

) -
P(E,t)

τ(E)
+ ∫0

∞
W(E′,E)

P(E′,t)
τ(E′)

dE′ (4)

P(E,t) ) g(E) exp(- t
τ(E))[1 + ∫0

t
C(t′) exp( t′

τ(E)) dt′] (5)

C(t′) ) ∫0

∞g(E)

τ(E)
exp(- t

τ(E)) dE +

∫0

t
C(t′) ∫0

∞g(E)

τ(E)
exp(- t - t′

τ(E) ) dE dt′ (6)

Ψ(s) ) ∫0

∞ τ(E)g(E)

sτ(E) + 1
dE (7)

C(s) ) ∫0

∞
C(t) exp(-st) dt ) 1

sΨ(s)
- 1 (8)

Gated Rate Processes in Biological Macromolecules J. Phys. Chem. A, Vol. 105, No. 23, 20015669



lous transport and the “traffic light” process along the reaction
conformational coordinate becomes particularly evident ifg(E)
is taken in the form of exponential and Gaussian distributions.
The comparison of our theoretical results forDeff(t) (see Table
2) and those reported earlier for the diffusion coefficient in one-
dimensional systems with static exponential and Gaussian energy
disorder14 shows that in these cases both the temperature and
time dependences of two quantities becomes identical. Further-
more, similar to the diffusive motion in the one-dimensional
energy landscape with static exponential and Gaussian disor-
der,30 the temporal behavior ofDeff(t) in the low-temperature
limit can be approximated within the time ranget < 〈τ(E)〉 by
the function

where D0)∆0
2〈τ-1(E)〉exp[-Ex/(kBT)] and ω)w0(〈τ-1(E)〉/

G0)1/(1-η), while parametersη and G0 are specified in
Table 2.

Once the explicit form ofDeff(t) is evaluated, the constrained
dynamics of conformational changes at the second tier can be
described in terms of the following differential equation for the
population distributionFx0

dif(x,t)

Here the subscriptx0 in the notation of the distribution function
implies that att ) 0 a biological macromolecule occupies
conformational substate withx ) x0. To a first approximation,
the potentialV(x) in eq 10 should be chosen as harmonic to be
in conformity with the requirement that the positionx ) 0
corresponds to the local equilibrium configuration of the
surroundings along the reaction coordinate. Besides, such a
potential increases withx and hence makes the diffusive motion
in the x-direction bounded. The latter circumstance fits the
restriction evident physically, which forbids the biomolecular
environment in local equilibrium to modify the configuration
without limit.

TABLE 1: Effective Diffusion Coefficient, Deff(t), within Different Temperature and Time Intervals a

time intervals

temp.
ranges

t , 1
〈1/τ(E)〉

1
〈1/τ(E)〉

< t < 〈τ(E)〉
t > 〈τ(E)〉

T > Tcr )
ú(E*)

kB

Deff ) ∆0
2w0 exp(-

Ex

kBT)
T < Tcr )

ú(E*)

kB

Deff(t) ) Deff ) ∆0
2 exp(-

Ex

kBT)〈 1
τ(E)〉

Deff(t) )
∆0

2 exp(-
Ex

kBT) sin(πT/Tmax(1/t))

πkBTΓ(T/Tmax(1/t))g(Emax(1/t))t

Deff(t) ) Deff ) ∆0
2 exp(-

Ex

kBT) 1
〈τ(E)〉

a Hereú(E*) ) -1/
d ln g(E)

dE |E)E*

, Emax ) kBT ln(w0t), Tmax ) ú(Emax)/kB, andΓ(z) is the gamma function. The brackets〈‚‚‚〉 in expressions

for Deff(t) stand for the averaging over the energy distribution of conformational substrates belonging to the third hierarchical tier. Other
notations are given in the text.

TABLE 2: Behavior of the Effective Diffusion Coefficient, Deff(t), for the Exponential and Gaussian Energy Distributions of
Conformational Substrates within Different Temperature and Time Intervalsa

time intervals

temp.
ranges

t , 1
〈1/τ(E)〉

1
〈1/τ(E)〉

< t < 〈τ(E)〉
t > 〈τ(E)〉

Exponential Energy Distributiong(E) ) 1
kBT0

exp(- E
kBT0

), E > 0

T > T0 Deff ) w0∆0
2 exp(-

Ex

kBT)
T < T0 Deff(t) ) Deff )

w0∆0
2T

T + T0
exp(-

Ex

kBT) Deff(t) ) ∆0
2G0 exp(-

Ex

kBT)(w0t)
η-1,

η ) T
T0

< 1, G0 )
w0 sin(πη)

πηΓ(η)

Gaussian Energy Distributiong(E) ) 1

(2π)1/2kBT0

exp(- E2

2(kBT0)
2), E > 0

T > T0 Deff ) w0∆0
2 exp(-

Ex

kBT)
T < T0 Deff(t) ) Deff )

w0∆0
2T

T + T0
exp(-

Ex

kBT) Deff(t) ) ∆0
2G0 exp(-

Ex

kBT)(w0t)
η-1, Deff(t) ) Deff ) w0∆0

2 exp(-
T0

2

2T2
-

Ex

kBT)
G0 )

w0T0 sin(πη)

(2π)1/2 TΓ(2η)
, η ) T2

2T0
2

ln(w0t)

a Expressions are obtained from theoretical result summarized in Table 1.

Deff(t) )
D0

(1 + ωt)1-η
(9)

∂Fx0

dif(x,t)

∂t
) D(t)

∂

∂x
exp(-

V(x)
kBT) ∂

∂x[exp(V(x)
kBT)Fx0

dif(x,t)] (10)
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To solve eq 10, we introduce a new variable

where the second equality sign corresponds toDeff(t) given by
eq 9. This enables us to reduce eq 10 to that used by Ornstein
and Uhlenbeck31 for description of Brownian motion in a
harmonic potential with force constantf. For the initial condition

the fundamental solution of eq 10 has a form of the Gaussian

with the meanx-value,xj, and the dispersion,σD
2 , given by

Equations 13-15 show that for the second hierarchical tier,
the maximum of the population distributionFx0

dif(x,t) relaxes
toward the local equilibrium positionx ) 0 ast increases. For
short- and long-time limits, this process can be described in
terms of the characteristic relaxation timeτ0. Substitution of
eq 11 into eq 14 proves that fort , 1/(ωη)

whereas fort > ω-1 exp(1/η)

It should be mentioned that eqs 16 and 17 predict distinct
temperature dependencies of the relaxation rateWrel ) 1/τ0 for
short and for longt. The prediction remains valid forT < Tcr

and for any one of the familiar mechanisms of the allowed
motion in thex-direction. In particular, if the motion is thermally
activated,Wrel increases withT in the short-time limitt , 1/ω,
following the Arrhenius law. However, this law ceases to be
true for long t, since the dispersion parameterη in eq 17
increases withT. As a consequence, in the long-time limitt .
1/ω, the relaxation rate varies more sharply with temperature
than one can expect reasoning from only the Arrhenius behavior
of D0.

These theoretical results provide a description of constrained
conformational rearrangements that are able to influence the
reactivity in large molecules under nonequilibrium conditions.
The extent to which the reaction rate is affected by these
rearrangements depends on the explicit form of the specific rate
coefficientk as a function ofx and manifests itself in variations
of observables with time and temperature. In the next section,
we evaluate the quantities of direct experimental interest
combining the proposed model of constrained conformational
changes with a model for the nonequilibrium barrier crossing
frequently used in the literature.11-13

2.3. Calculations of Observables.The model considered in
the previous section implies that the third tier of the hierarchy
has no direct effect on the reactivity but modulates it by
controlling the motion in thex-direction. Because of this, the
reaction proceeds on the potential energy surfaceU(r, x), which
depends solely on variablesr and x associated with the first
and second tiers, respectively. Since for many surfaces of
bimolecular collisionsU(r, x) allows local separability,32 the
specific rate coefficientk(x) can be derived using methods
discussed in ref 3a.

The explicit form ofk(x) needed for calculations of observ-
ables is particularly easy to obtain if the potentialU(r, x) for
reaction products is the sum of two special terms.3a,11One term,
U(r), depends only onr and exponentially approaches the
constant valueδs asr f ∞. Another is the harmonicx-dependent
part V(x) ) fx2/2 with the force constantf. For this separable
potential3a,11,12

wherek0 is the preexponential factor andx* is the value of the
conformational coordinate corresponding to the most reactive
substate. The parameterγ in eq 18 can be specified in terms of
the shift,∆x, between equilibrium values of the conformational
reaction coordinate for chemically active and chemically inactive
states as

while x* is related toδs by the relation

For k(x) given by eq 18, the relaxation of the system from
the initial substatex ) x0 toward substates with the lower
reactivity can compete in rate with the chemical reaction
proceeding at different configurations of the biomolecular
environment. As a result, the mechanism of the entire process
involves two parallel rate channels, which are responsible for
the time evolution of the survival probabilityS(x0, t). The latter
quantity can be evaluated invoking the method of prescribed
diffusion,3a,11cwhich suggests that chemical reaction has a minor
effect on the shape of the population distributionFx0

dif(x,t).
Application to problem under consideration yields

where 〈k(x0,u)〉x is the time-dependent specific rate averaged
over the solution of eq 10

andu ) u(t) is given by eq 11 as before.
By virtue of eqs 18-20, the mean specific rate can be

rewritten in the Arrhenius formk ) k0 exp[-HR/(kBT)], where
HR is the reaction barrier. The model, thus, predicts an increase
of HR with time due to the conformational relaxation of the
reactant surroundings. Such an increase can be described in
terms of the relaxation function

u(t) ) ∫0

t
Deff(z) dz )

D0

ηω
[(1 + ωt)η - 1] (11)

Fx0

dif(x,0) ) δ(x - x0) (12)

Fx0

dif(x,u(t)) ) (2πσD
2)-1/2 exp[-

(x - xj)2

2σD
2 ] (13)

xj ) x0 exp[-fu(t)/(kBT)] (14)

σD
2 ) (kBT/f)[1 - (xj/x0)

2] (15)

τ0 )
kBT

fD0
(16)

τ0 ) 1
ω(ηkBTω

fD0
)1/η

(17)

k(x) ) k0 exp[-γ(x* - x)] (18)

γ ) f∆x/(3kBT) (19)

x* ) (δs + 1
2
f(∆x)2)/f(∆x) (20)

S(x0,t) ) exp(-∫0

t
〈k(x0,y)〉x dy) (21)

〈k(x0,u)〉x ) ∫x
k(h)Fx0

dif(h,t) dh )

k0 exp[-γ(x* - xj(u) - 1
2

γσD
2(u))] (22)
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The above expression forΦ(t) can be simplified in two
limiting cases. Fort , 1/ω, eq 23 gives

with the characteristic relaxation timeτ0 given by eq 16.
However, in the long time domain wheret . 1/ω, instead of
eq 24 one gets

whereτ0 is defined now according to eq 17. These two distinct
time behaviors of the relaxation function imply that in the course
of the conformational rearrangement of the reactant surroundings
a transition exists from the Debye exponential relaxation to the
Kohlrausch-Williams-Watts (KWW) relaxation33 described by
a stretched exponential.

2.4. Consequences for Experiments.The results presented
above allow several experimental tests of the proposed theory.
The most obvious candidate for comparison of theory and
experiments is the recombination of carbon monoxide (CO) and
the central heme iron of photolyzed carbonmonoxymyoglobin
(MbCO), probed by different methods over wide ranges of time
(1 ps to 1 ks), temperature (10-320 K), and solvent condi-
tion.1,9,22-24 The low-temperature kinetics of this reaction shows
that survival probability decreases witht following a nonex-
ponential law. Such behavior is consistent with our model, which
suggests that at low temperatures, the rate of transitions, 1/τ*,
between conformational substates belonging to the third hier-
archical tier becomes small and the “red” traffic light forbids
the motion in thex-direction, i.e., the displacement of the iron
from the mean heme plane.12 As a consequence, immediately
after the laser flash, myoglobin (Mb) molecules become “frozen”
in the variety of initial conformationsx0, which differ substan-
tially in the barrier height,HR, for CO rebinding and can be
characterized by the inhomogeneous distributionF(x0). In this
situation, the specific rate in eq 21 becomes time-independent,
i.e., 〈k(x0,t)〉x ) k(x0), and the mean survival probability can be
calculated from the expression

The above equation coincides with earlier theoretical re-
sults,11,12 which provide9 the adequate description of the low-
temperature CO rebinding. A new prediction following from
the present model is that the temporal behavior of the mean
survival probability predicted by eq 26 can be observed also at
high temperatures if MbCO is embedded in a rigid matrix able
to suppress the conformational changes at the third hierarchical
tier. Recent experimental studies of geminate CO rebinding in

photolyzed MbCO in trehalose at room temperature22 support
this prediction. The results obtained allow the authors to
conclude22 that high solvent viscosity prevents both intercon-
version of conformational substates and relaxation in the interior
of the protein, independent of temperature. This ceases to be
true for a glycerol/water matrix with much smaller viscosity;
then geminate rebinding slows down asT is increased through
the solvent glass transition.9 According to our model, the
decrease of the reaction rate can be attributed to a conforma-
tional relaxation that leads to higher reaction barrierHR, see
eqs 23-25.

Experimental information concerning the temporal behavior
of the reaction barrier can be obtained by probing the time
evolution of band III, a weak iron-porphyrin charge-transfer
transition near 763 nm that is sensitive to the out-of plane
position of the heme iron in Mb.23 At T ) 301 K, it has been
found thatνj(t), the center frequency of the band, increases with
t from νj(0) ) 12915 cm-1 for the unrelaxed state with a nearly
plane heme geometry toνj(∞) ) 13113 cm-1 assigned to the
relaxed Mb with the equilibrium domed position of Fe atom.
Since the displacement of the iron from the mean heme plane
determines both the shift of the center frequency of band III
and the barrier height for CO binding, these two processes
should be described in terms of the same relaxation function
Φ(t) defined by eq 23. Hence, based of the present model one
can expect that

with ∆ν ) νj(∞) - νj(0).
Comparison of eq 27 with the experimental dependenceνj

versust enables one to check whether the derived form of the
Φ function can adequately reproduce relaxation kinetics. Data
presented in Figure 2 show that eq 24 fits experimental results
obtained att < 10 ps, whereas eq 25 describes relaxation kinetics
at longer times, over 7 decades. This allows the conclusion that
the transition from the Debye exponential relaxation to the
KWW nonexponential relaxation does occur in the course of
conformational rearrangement of nonequilibrium protein struc-
ture. Note that according to our model, the relaxation process
in the Debye and KWW regimes should exhibit different
temperature dependence (cf. eq 16 and eq 17). For the Debye
regime, the relaxation rateWrel ) 1/τ0 is expected to follow the

Φ(t) )
HR(∞) - HR(t)

HR(∞) - HR(0)
)

exp(- f
kBT

u(t))[
1 - ∆x

6x0
exp(- f

kBT
u(t))]

1 - ∆x
6x0

(23)

Φ(t) ) exp(-t/τ0)
[1 - ∆x

6x0
exp(-t/τ0)]

1 - ∆x
6x0

(24)

Φ(t) ) exp(-tη/t0
η)

[1 - ∆x
6x0

exp(-tη/t0
η)]

1 - ∆x
6x0

(25)

〈S(t)〉 ) 〈S(x0,t)〉x0
) ∫x0

F(x0) exp(-k(x0)t) dx0 (26)

Figure 2. Temporal evolution of the center frequencyνj of band III
after dissociation of CO-Fe bond in horse myoglobin. Open circles
are experimental data.23 Dashed and solid lines are obtained from eq
27 with the relaxation functions given by eq 24 and eq 25. For the
exponential function (eq 24),τ0 ) 3.3 ps; for the stretched exponential
(eq 25),τ0 ) 0.7 ps andη ) 0.1. In both cases,∆x/x0 ) 2.4

νj(t) ) νj(0) + ∆ν(1 - Φ(t)) (27)
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Arrhenius law. By contrast, the KWW relaxation is predicted
to be non-Arrhenius. Experimental studies of the temperature
effect on the time evolution ofνj are needed to check these
theoretical predictions.

3. Rate Processes Coupled to Conformational
Fluctuations

In this section, we consider processes in biological molecules
near equilibrium, where they fluctuate between different con-
formations. Similar to relaxation events considered in section
2, these fluctuations are able to gate rate processes by what we
call the “traffic light” mechanism. As has already been
mentioned in Introduction, this situation is common for diffu-
sion-controlled reactions.2 Less is known about the effect of
conformational fluctuations on the processes at the biomolecular/
metal interfaces. Theoretical studies of such processes are
important for gaining deeper understanding into physical
mechanisms that might ensure the functioning of some structur-
ally appropriate biomolecules as molecular wires.15,16Here we
focus on this problem with a special emphasis on DNA, whose
unique molecular structure makes this biomolecule particularly
attractive for application in functional mesoscopic electronic
devices34 and in molecular computing.35

In the next section, we discuss main processes that determine
the electrical conductivity of DNA molecules. A “traffic light”
model for hole injection in a DNA wire is presented in section
3.2. As follows from numerical results considered in section
3.3, the same dynamic mode that “allows” a hole injection can
affect the mobility of charge carriers generated on the wire. It
is shown that both effects lead to an anomalous temperature
dependence of the electrical conductivity, which decreases with
T and does not follow the Arrhenius law.

3.1. Background.As in other molecular wires,36,37the electric
current,Iec, through the DNA molecule connecting two nano-
electrodes is determined by two processes, i.e., the injection of
charge carriers onto the stack of base pairs and their transport
along the stack. A central physical factor governing the
efficiency of the injection is the location of the Fermi level,
EF, of the metallic contact relative to the energy levels of the
stack. Obviously, the injection efficiency would be high if the
Fermi level could align with one of the occupied or unoccupied
molecular orbitals. However, it seems fairly certain that usually
this is not the case. Instead, the Fermi level should fall in the
HOMO-LUMO gap in order to preserve the charge neutrality
of the “extended” molecule,38 and the potential energy barrier
will arise at the metal-molecular junction (Figure 3). In the
absence of the electric field, the barrier height∆g that must be

overcome to generate an “electronic” hole in the molecule with
the ionization potentialI can be approximated as39

whereWM is the work function of the metallic contact.
The application of eq 28 for the estimation of∆g requires

information about energetics of nucleobases within the stack.
Experimental data on one-electron redox potentials of nucleo-
bases in solution show that the energy of the hole when residing
on adenine (A), cytosine (C), or thymine (T) bases is higher
than that when on guanine (G) by 0.5-0.7 eV.40 If the same
trend is maintained in DNA, hole injection will proceed by
electron transfer from the G site of the stack to metal. According
to ab initio calculations,19 the ionization potential of the G base
is equal to 7.75 eV, and hence, eq 28 yields∆g ) 2.39 eV for
DNA bridging two platinum contacts with work function 5.36
eV (see ref 41). Taking a typical barrier length as 5 Å,42 it can
be verified that thermally activated generation of holes is
precluded, while the transmittance of their injection barrier for
electron tunneling,T(EF), is about 4× 10-3. This implies that
at low voltages (with much less than∼1V being dropped across
the molecule) the resistanceRof the DNA wire evaluated from
the Landauer formulaR) pπ/(e2Ttun(EF)) ) 12.9(kΩ)/Ttun(EF)43

is expected to be about 3.6 MΩ, in reasonable agreement the
value measured by Fink and Scho¨nenberger.17 Thus, we
conclude that at low bias the metal-molecular junction makes
the main contribution to the conductance of the DNA wire.

The situation, however, becomes different at higher voltages,
since the gap between the HOMO of G bases and the Fermi
level of the contact decreases with increasing voltageU. In the
vicinity of a certain voltage threshold, which corresponds to
the energy crossing, the conduction of the DNA wire will be
controlled by the ability of the base pair stack to transport a
charge rather than by the efficiency of the injection process.
Recent theoretical44-49 and experimental50-53 studies of long-
range charge transfer in DNA show that a hole moves along
stacks of AT and GC base pairs undergoing sequential tunneling
transitions between neighboring G sites separated by fragments
containing A and/or T bases. The basis of this hopping
mechanism is that a guanine cation cannot oxidize A (or T or
C) because of the larger ionization potential of A compared
with that of G but can oxidize another G. According to standard
electron transfer theory,20,54 each oxidation step proceeds with
the rateWhop, which exponentially decreases with the length,
LAT, of the AT bridge between two adjacent G bases, i.e.

where W0 is the preexponential factor andâ is the falloff
parameter.

The direct consequence of eq 29 is the effect of arrangement
and number of G bases in the stack on the hole mobilityµ and
therefore on the conductance of DNA wires near the voltage
threshold. As follows from theoretical analysis46,48 of charge-
transfer experiments50,51 performed for various base pair se-
quences,Whop decreases by about a factor of 0.3 for each
intervening AT base pair linked directly to the previous pair
(like AA/TT) or about 1 order of magnitude for cross linked
pairs (like AT/TA). Therefore, the highest mobility of holes
along an AT-GC stack should be expected for base pair
sequences with only one repeating AT pair between G bases.
For these regular sequences, the value of the hole drift mobility
can be evaluated from the Einstein relation

Figure 3. Energy levels for the metal-DNA contact. The metal work
function WM defines the position of the metal Fermi levelEF. A hole
is injected to the highest occupied molecular orbital (HOMO) of the
DNA whose ionization potential isI with respect to the vacuum level.

∆g ) I - WM (28)

Whop ) W0 exp(-âLAT) (29)
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wherekB is the Boltzmann constant,T is temperature, andD
is the diffusion coefficient of holes. To determine the drift
mobility from eq 30, we use the G-G hopping rate of about
109 s-1, roughly estimated by Jortner et al.45 for the strand
GTTGTTGTT...TTG. For the sequence with one AT pair
between G bases, this value should be larger by a factor of 3
due to the dependence ofkhop on the number of intervening AT
pairs specified above. Taking the mean plane-to-plane distance
between stacked bases to be equal to 3.4 Å,55 we conclude that
the hole mobility calculated from eq 30 for holes moving along
the sequence with one repeating AT pairs between G bases is
expected to be 2× 10-3 cm2 V-1 s-1 at room temperature.
Similar estimates made for other regular sequences show that
µ indeed decreases with the number of intervening AT pairs
and depends on the particular base pairs stacked on the same
strand (Figure 4).

Breaking of the positional order in the base pair sequences
can dramatically reduce the mobility of holes undergoing
hopping motion along the stack. There are two possible reasons
for this effect. One reason lies in the fact that the hole mobility
along the stack with irregular positions of G bases is determined
by the time it takes for a charge carrier to jump through the
longest AT fragments. Another reason is the existence of
thermodynamic traps in sequences where several adjacent G
bases are stacked on the same strand.19,50 The origin of such
traps can be understood within the tight-binding approach, which
allows the calculation of the ionization potential of stacking G
bases using the Hu¨ckel Hamiltonian

Herecn
+ andcn are the creation and annihilation operators for a

hole atnth site, respectively,b is the transfer integral, andεn is
the energy of a hole at thenth site (for a single siteε1

corresponds to the ionization potentialI1 of a single G base).
The solution of the Schro¨dinger equation with the Hamiltonian

(31) enables one to estimate the ionization potential for any
number,NG, of stacked G in terms of the lowest energy needed
to create one hole. The results of our tight-binding calculations
with parametersI1 ) 7.75 eV andb ) 0.4 eV are shown in
Figure 5. As can be seen from the numerical results obtained,
the ionization potential of the stacked G bases decreases with
NG in good agreement with the results of ab initio studies.19

Accordingly, the energy of hole located, for instance, on GGG
is lower than the energy of G+ by about 0.7 eV, and hence, the
triple GGG serves as a sink for moving hole in accord with
experimental findings.50

It is interesting that in the limit of a large number of stacked
G bases, the ionization potential moves toward the valueI1 -
2b ) 6.95 eV that corresponds to theI value for the poly(G)-
poly(C) duplex. The difference in ionization potentials for the
individual G and for G bases stacked at the same strand can be
explained by the formation of the band with width 2b due to
π-π interactions between neighboring GC pairs. Equation 28
then implies that for poly(G)-poly(C) oligomers, the energy
barrier,∆g, for hole injection becomes smaller in comparison
with irregular DNA stacks consisting of both AT and GC pairs.
The lowering of the potential barrier, in turn, will reduce the
voltage threshold,Uc, for poly(G)-poly(C) duplex as compared
to that for irregular DNA.

To estimateUc, we exploit the simplest model possible, which
suggests that the potentials at the injecting and collecting
contacts vary with the applied voltage asWM - U/2 andWM +
U/2, respectively. If, in addition, one assumes that the applied
field does not affect the electronic structure of stacked base pairs,
the HOMO of the molecular wire will be expected to cross the
Fermi level at the voltage

Experimentally, the energy crossing manifests itself as the
voltage gap in the observedIec-U curves. Equation 32 is
applicable to the evaluation of this observable only in the low-
temperature limit, where the molecular motion in the stack is
frozen and does not perturb the alignment of base pairs optimal
for the injection process. Using the ionization potential of the
poly(G)-poly(C) duplex calculated above, we conclude that in
the case of platinum electrodes the voltage gap for the poly(G)-
poly(C) molecular wire is about 3V. This crude estimate is

Figure 4. Hole mobility along a DNA wire composed ofl repeating
AT pairs between two adjacent G bases as a function of the number
of AT base pairs within the bridge. The numerical results shown by
circles and squares correspond to stacks with strands G(TT)lG(TT)l-
G(TT)l...(TT)lG and G(TA)lG(TA)lG(TA)l...(TA)lG, respectively.

µ ) e
kBT

D = e
kBT

WhopLAT
2 (30)

Ĥ ) ∑
k)1

N

εknk - b∑
k)1

N-1

(ck
+ck+1 + ck+1

+ ck)

nk ) ck
+ck (31)

Figure 5. Dependence of the ionization potential on the number of G
bases stacked on the same strand. The squares are ab initio calcula-
tions,19 and the triangles are the results of tight-binding calculations;
b ) 0.4 eV, I1 ) 7.75 eV.

Uc ) 2(I - WM)/e ) 2∆/e (32)
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consistent with the experimental value reported by Porath et
al.18 for the poly(G)-poly(C) duplex between two platinum
contacts at cryogenic temperatures.

3.2. Dynamic Model for Poly(G)-Poly(C) Duplex. To
describe the injection of holes along the poly(G) strand at finite
temperatures, the dynamics of the stack has to be taken into
account, since different types of internal molecular motion
observed in DNA on various time scales56 can influence the
coupling between the nearest-neighboring GC pairs in the
poly(G)-poly(C) molecular wire. Particular dynamic modes that
can affect the coupling include bending, flipping of bases,57 and
their twisting around the stack axis.19 To avoid choice of the
specific dynamic mode, which is currently not justified experi-
mentally, it is convenient to introduce the conformational
coordinateæi, which determines the relative arrangement of
adjacentith and (i+1)-th G bases. Then the potential energy
associated with the conformational degree of freedom near the
equilibrium positionæi ) æeq can be approximated by

with Fs being the stiffness constant.
The effect of molecular motion on the coupling within the

stack is modeled by the dependence of the transfer integral,
bi,i+1, for sitesi andi + 1 on the coordinateæi. In analogy with
eq 33, the explicit form of this dependence can be derived by
expandingbi,i+1(æi) as power series in (æi - æeq). If we restrict
ourselves to the terms of the second order in (æi - æeq), the
result reads

Such dependence on a conformational coordinate occurs very
often, particularly forπ-type chromophores.21,58 Note that the
coupling constantsA andB in eq 34 depend on the position of
the maximum for the transfer integral. Ifbi,i+1(æi) reaches the
maximum value atæi ) æeq (i.e., at the equilibrium position of
the conformational coordinate), thenA ) 0, andB > 0. This is
particularly true for twisting motion in molecular conductors,
as evident from earlier studies.21,59 Oncebi,i+1(æi) is specified,
the derivation of the temperature dependence of the mean
transfer integral〈bi,i+1〉 is straightforward. All we need to do is
to average eq 34 over the Boltzmann distribution

As a result, we get

Thus, the transfer integral becomes smaller as temperature
increases, since molecular rearrangements within the stack
reduce π-π interaction between adjacent G bases. Conse-
quently, the ionization potential of the poly(G)-poly(C) duplex,
which falls off with b, will increase, and the voltage gapUc

will widen with T linearly, as follows from eq 32 and eq 36.
The slope and intercept of the linear dependenceUc versusT is
given by

Thus, we conclude that the voltage gap for the poly(G)-
poly(C) wire does not obey the familiar Arrhenius law. Instead,
theUc values should linearly increase withT, following linear
temperature dependence with the slope and the intercept given
by eq 37 and eq 38, respectively. This trend was indeed observed
for the poly(G)-poly(C) duplex.18 Due to the wide scatter in
the data, the obtained results provide only order-of-magnitude
evaluation of the experimental slope which gives dUc/dT ≈ 10-3

V/K.
3.3. Transport of Injected Holes Along a Poly(G)-Poly(C)

Wire. In addition to the injection process considered in section
3.2, the conductivity of the poly(G)-poly(C) duplex will be
determined by the drift mobility,µ, of generated holes along
the molecular wire. Theµ value can be estimated from the
Einstein relation (see the first equality in eq 30), if the diffusion
coefficientD for holes is known.

One simple estimate for the latter quantity is based on the
time-dependent self-consistent field (TDSCF) approach58 used
earlier for studying charge motion in DNA.44,49This allows us
to describe hole transport within the framework of the same
dynamic model used in section 3.2 to treat the injection process.
To investigate the effect of twisting motion on the diffusion of
charge carriers, we modify the Hu¨ckel Hamiltonian (eq 31) by
adding a term dependent on the angular coordinatesæi(t). As a
result, the Hamiltonian for holes can be written as

The twisting motion is described by the Hamiltonian

where Ĩ is the moment of inertia of a GC base pair.
The equation of motion along the conformation coordinate

was obtained by averaging the Hamiltonian in eq 39 over the
hole wave function|Ψ(t)〉 ) Σkck(t)|k〉 and adding the result to
eq 40. Since initially a hole is assumed to be localized on the
site with k ) 1, the initial condition for the wave function is
c1(t)0) ) 1 andck*1(t)0) ) 0.

The mean-square displacement of holes along the poly(G)-
poly(C) wire defined as

was calculated exploiting the numerical procedure described
earlier.44,61bIn the calculations, the equilibrium angle,æeq, was
taken to be equal to-36° on the basis of the data reported in
refs 19 and 62. The moment of inertia,Ĩ, was calculated using
the atomic coordinates of a GC base pair.63 The values ofFs

were the same as in section 3.2, and the angular-dependent
charge-transfer integralb(æk+1(t) - æk(t)) was taken equal to
half the energy difference of the HOMO-HOMO1 orbitals of
stacked 5′-GG-3′, as calculated by Sugiyama and Saito.19

The calculated temperature and time dependencies of the
mean-square displacement are plotted in Figure 6. As can be
seen from the numerical data obtained,∆wire

2 (t) linearly in-
creases witht as long as the temperature remains constant. The
slope of this linear dependence provides the diffusion coefficient
of holes, since for one-dimensional motion∆wire

2 (t) ) 2Dt.

ui ) 1
2
Fs(æi - æeq)

2 (33)

bi,i+1(æi) ) b(1 - A(æi - æeq) - B(æi - æeq)
2) (34)

wB ) ( Fs

2πkBT)1/2

exp(-
Fs(æ - æeq)

2

2kBT ) (35)

〈bi,j〉 ) b(1 - B〈(æ - æeq)
2〉) ≈ b(1 - B

kBT

Fs
) (36)

dUc

dT
≈ 4b

kBT

eFs
(37)

Uc(0) ) 2(I1 - WM - 2b)/e (38)
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N

εkck
+ck - ∑
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N-1
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1
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[ Ĩ æ̆k
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Figure 7 shows that temperature reducesD, in contrast with
the familiar Arrhenius law. This can be an additional reason
for the anomalous temperature dependence of conductivity
observed for poly(G)-poly(C) duplexes.18 It is also evident that
the numerical data on the temperature dependence of the hole
diffusion coefficient can be approximated as

whereD1 andD2 are constants equal to 0.44 cm2/s and 63 cm2

K s-1, respectively. This functional form of the temperature
dependenceD(T) is consistent with the scattering of moving
holes by fluctuations ofæ in the vicinity of its equilibrium value
æeq.64

It should be noted that the temperature dependencies of the
diffusion coefficient and the mobility of holesµ following from
eqs 30 and 42 are distinct from those resulted from “conven-
tional” electron-phonon interaction effects in condensed media.
In the latter case, the mobility of quasi-free charge carriers varies
with temperature asT-3/2 (see ref 65). Due to the Einstein
relation given by the first equality in eq 30, this implies that
for holes in liquids and solidsD(t)∼T-1/2. Thus, conformational
fluctuations lead to stronger temperature dependencies of hole

transport coefficientsµ andD as compared with the “conven-
tional” effects of electron-phonon interaction.

The numerical data on the diffusion coefficient suggest that
the mobility of holes injected in the poly(G)-poly(C) duplex
is high. If the value of the transfer integral used in our
calculations is the upper limit of this parameterb, one can
conclude that at room temperatureµ should be less than or equal
to 30 cm2 V-1 s-1. This value is much higher than the estimated
values of the hole mobility in mixed stacks consisting of both
AT and GC.

4. Conclusions

In summary, we have demonstrated that the concept of gating
allows for deeper insight into the mechanism of rate process
coupled to the conformational relaxation or conformational
fluctuations in biological macromolecules. Applied to the
equilibrium and nonequilibrium situations, this concept treats
certain gated chemical reactions and transport phenomena in
biologically important systems as “traffic light” rate processes.
In the case of nonequilibrium biomolecular environment, we
proposed the class of models which describe the effect of global
dynamic modes of the biological object on the time evolution
of the local conformational coordinatex governing the specific
ratek(x) of the barrier crossing. The general results obtained in
section 2.2 show that in the vicinity of a certain temperature
T0, prescribed by the energy distribution of conformational
substates, the global modes give rise to the smooth transition
from the normal Gaussian diffusion in thex-direction to the
anomalous non-Gaussian dynamics. The latter process is
characterized by the time-dependent diffusion coefficientD(t)
moving toward distinct asymptotic values in the short- and long-
time limits. These theoretical findings justify the dispersion
model for small ligand binding to heme proteins, which suggests
that diffusion along the conformational reaction coordinate
should be considered as the non-Gaussian process in view of
characteristic similarities of proteins and glasses.

The expressions for observables derived within the framework
of our model predict that the coupling of local and global modes
can manifest itself experimentally as (i) the suppression of the
reaction coordinate dynamics in biomolecules imbedded in rigid
matrix and (ii) a transition from the familiar Debye exponential
relaxation to the KWW relaxation described by a stretched
exponential. The experimental data on the reaction barrier
available for ligand binding to myoglobin strongly support this
prediction. In addition, we showed that Debye and KWW
relaxation processes could be distinguished by their temperature
dependencies: the former process follows the familiar Arrhenius
law, while the latter is found to be non-Arrhenius.

As an example of “traffic light” rate processes at the bio-
molecular/metal interfaces which are affected by fluctuations,
we have considered hole injection and transport in stacks of
Watson-Crick base pairs in B-form DNA. Our analysis focused
on two types of stacks, which differ in the arrangement and
number of guanine bases involved. The stacks of the first type
consist of irregular sequences of pyrimidine and purine deoxy-
nucleotides, while the second involves regular stacks containing
only guanine-cytosine pairs. It has been shown that despite
this structural distinction, the general feature of the injection
process turns out to be common for both types of molecular
wire: in both cases, the motion of charge carriers in the metal-
DNA junction proceeds via tunneling controlled by internal
fluctuation dynamics of the stack. A theoretical model developed
for this mechanism of hole injection in the poly(guanine)-poly-
(cytosine) duplex predicts linear increase of the voltage gap with

Figure 6. TDSCF time behavior of the mean-square displacement of
holes in poly(guanine)-poly(cytosine) duplex at 293 K (curve 1), 200
K (curve 2), 150 K (curve 3), 100 K (curve 4), and 50 K (curve 5).

Figure 7. Temperature dependence of the diffusion coefficient for holes
in poly(guanine)-poly(cytosine) duplex. Points are numerical results.
Solid line is approximation according to eq 42.

D(T) ) D1 +
D2

T
(42)
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temperature and provides estimates for the slope and the
intercept, which are in reasonable agreement with available
experimental data. We also used a simple dynamic TDSCF
model for studying transport of holes along regular stacks
containing only guanine-cytosine pairs. As follows from the
numerical results obtained, the diffusion coefficient and the
mobility of holes decrease with temperature due to the scattering
by fluctuations of the twisting angle between adjacent base pairs.
This, together with the linear increase of the voltage gap with
temperature, explains the anomalous temperature dependence
of conductivity found for poly(guanine)-poly(cytosine) mo-
lecular wires. The upper limit of the hole drift mobility estimated
from our numerical results show that charge carrier transport
proceeds more effectively in poly(guanine)-poly(cytosine)
duplex than along irregular stacks of pyrimidine and purine
deoxynucleotides. This conclusion is consistent with results of
recent experiments on charge transfer in DNA.
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